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estimation?

• in statistics, we often want to recover some population parameter, but we only have a sample
drawn from that population.

• in other words, we want to estimate the population parameters
− a point estimator is any statistic T (X1, . . . ,XN) of the sample
− an estimate is the realization of T for a given sample x = (x1, . . . , xn)

• and derive some important properties about estimators
− is it biased? consistent? asymptotic distribution?
− is it the most efficient estimator available?
− how to conduct hypothesis testing? (coming soon...)

• in this lecture, we will discuss
1. methods for finding estimators
2. methods for assessing estimators
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how to find an estimator?

• method of moments
− estimate population moments with their sample analogs
− simple and intuitive

• maximum likelihood
− describe data fully, not only moments
− efficient, invariant, full of desirable properties

• Bayesian approach
− fundamentally different approach: θ is a quantity with possibly non-zero variation, rather than fixed
− sample updates the belief about the parameter
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sample analog of moments: intuition

• let {X1, . . . ,Xn} denote a random sample from a population with pmf/pdf f (x |θ) where
θ = [θ1, · · · , θk ]′.

• the pdf has population moments E(X j) = µj and we assume that at least k moments exist.

• population moments are typically known functions of the parameters

µj = hj(θ)

e.g. if X ∼ N(µ, σ2), then µ1 = µ and µ2 = σ2 + µ2.

• so we equate the sample moments to population moments, and then solve for the parameters

µ̂1 ≡ n−1
n∑

i=1

Xi = µ̂

µ̂2 ≡ n−1
n∑

i=1

X 2
i = σ̂2 + µ̂2

so the method of moments estimates are µ̂ = µ̂1 and σ̂2 = µ̂2 − µ̂2
1.
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sample analog of moments: intuition

• rewriting,

µ̂ = µ̂1 = n−1
n∑

i=1

Xi = X̄n

σ̂2 = µ̂2 − µ̂2
1 = n−1

n∑
i=1

X 2
i − X̄ 2

n

= n−1
n∑

i=1

(Xi − X̄n)
2

as we could expect.
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sample analog of moments

• generally, the method of moments estimator θ̂ = [θ̂1, . . . , θ̂k ]
′ is the solution to the simultaneous

equations that match the first k sample moments to the corresponding k population moments:
µ̂1 ≡ 1

n

∑n
i=1 Xi = h1(θ̂1, . . . , θ̂k)

...
µ̂k ≡ 1

n

∑n
i=1 X

k
i = hk(θ̂1, . . . , θ̂k)

• we need at least k moments to solve the system of equations for k parameters.

• even considering k moments, the system of equation may not have an unique solution for θ, but
we will assume this case away.

• an interesting case arises when we have more equations than unknowns.
− for example, if X ∼ Poisson(λ), we have that E(X ) = var(X ) = λ
− so we have two equations and one unknown!
− this system might not have a solution at all.
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method of moments for gamma

• example: suppose we have a sample {x1, . . . , xn} drawn from the gamma(α,β) distribution, given
by

f (x |α, β) =
1

Γ(α)βα
xα−1e−

x
β

with E(X ) = αβ and var(X ) = αβ2. So E(X 2) = αβ2 + α2β2. Equating to sample moments,

µ̂1 ≡ n−1
n∑

i=1

Xi = α̂β̂

µ̂2 ≡ n−1
n∑

i=1

X 2
i = α̂β̂2 + α̂2β̂2

and solving for the parameters in terms of quantities calculated from data,

µ̂2 = α̂β̂2 + α̂2β̂2 ⇒ µ̂2 − µ̂2
1 = α̂β̂2 ⇒ β̂ =

µ̂2 − µ̂2
1

µ̂1

α̂ = µ̂1
µ̂1

µ̂2 − µ̂2
1

=
µ̂2

1

µ̂2 − µ̂2
1
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method of moments for exponential

• example: suppose we have a sample {x1, . . . , xn} drawn from exponential(λ) distribution, given by

f (x |λ) = λe−λx

with E(X ) = λ−1 and var(X ) = λ−2, so E(X 2) = 2λ−2. We can propose two method of moments
estimators:

µ̂1 ≡ n−1
n∑

i=1

Xi = λ̂−1 ⇒ λ̂ =
1
µ̂1

and

µ̂2 ≡ n−1
n∑

i=1

X 2
i = 2λ̂−2 ⇒ λ̂ =

√
2
µ̂2

9 / 81



method of moments in practice - R codes

α̂ =
µ̂2

1

µ̂2 − µ̂2
1

β̂ =
µ̂2 − µ̂2

1

µ̂1

MMsamplerGamma <- function(alpha,beta,n){
hats <- matrix(0,5000,2)
for (i in 1:5000){

randomVec <- rgamma(n,scale=beta,shape=alpha)
mu1 <- mean(randomVec)
mu2 <- mean(randomVecˆ2)
hats[i,1] <- mu1ˆ2/(mu2-mu1ˆ2)
hats[i,2] <- (mu2-mu1ˆ2)/mu1

}
hats

}
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Gamma(1,5)
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method of moments in practice - R codes

λ̂1 =
1
µ̂1

λ̂2 =

√
2
µ̂2

MMsamplerExponential <- function(lambda,n){
hats <- matrix(0,5000,2)
for (i in 1:5000){

randomVec <- rexp(n,lambda)
mu1 <- mean(randomVec)
mu2 <- mean(randomVecˆ2)
hats[i,1] <- 1/mu1
hats[i,2] <- (2/mu2)ˆ(0.5)

}
hats

}
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exp(2)
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exp(20)
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likelihood function
• definition: if x = (x1, . . . , xn) is a random sample from a population with pdf/pmf fX (x |θ), the

likelihood function is

ℓ(θ|x) = ℓ(θ1, . . . , θk |x1, . . . , xn) = fX (x |θ)

=
n∏

i=1

fX (xi |θ)

where θ ∈ Θ.

• discrete case: if we compare the likelihood functions at θ1 and θ2 and find that

Prθ1(X = x) = ℓ(θ1|x) > ℓ(θ2|x) = Prθ2(X = x),

then the sample we observe is more likely to stem from θ = θ1 than from θ = θ2. in other words,
θ1 is more plausible that θ2 given X = x .

• definition: the maximum likelihood estimator (MLE) of the parameter vector θ based on a sample
X = (X1, . . . ,Xn). That is,

θ̂n(X ) = argmax
θ∈Θ

ℓ(θ1, . . . , θk |X1, . . . ,Xn)
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pdf vs likelihood function

• from ℓ(θ|x) = fX (x |θ), it is key to note that
− the pdf is a function of data, given parameters
− the likelihood is a function of the parameters, given data

• example: let X have a binomial distribution. The p.d.f. is a function of x , given p,

fX (x |p = 0.3) =

(
10
x

)
(0.3)x(0.7)10−x

and the likelihood is a function of p given x

ℓ(p|x = 3) =

(
10
3

)
p3(1 − p)10−3
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pdf vs likelihood function
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pdf vs likelihood function
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how to find and verify the global maximum?

• if the likelihood is differentiable in θ, possible candidates for the MLE are the values of θ that
solve ∂

∂θi
ℓ(θ|x) = 0 for i = 1, . . . , k

• only possible candidates because. . .

− necessary, but not sufficient, condition for an interior maximum

− first derivative may be nonzero if the extrema occur at the boundaries

− check boundary separately and make sure the points at which first derivative is zero are not only local
maxima, local/global minima or inflection points
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Gaussian likelihood

• example: if X1, . . . ,Xn are iid N(µ, 1), then

ℓ(µ|x) =
n∏

i=1

1√
2π

exp

[
−1

2
(xi − µ)2

]

=
1

(2π)n/2 exp

[
−1

2

n∑
i=1

(xi − µ)2
]

d
dµ

ℓ(µ|x)
∣∣∣∣
µ=µ̂

= 0 ⇒
n∑

i=1

(xi − µ̂) = 0 ⇒ µ̂ = x̄n

now, x̄n is not only the unique solution of
∑n

i=1(xi − µ̂) = 0, but also such that
d2

dµ2 ℓ(µ|x)
∣∣∣
µ=x̄n

< 0, so it is a global maximum.

• checking the likelihood at the boundaries: limµ→±∞ ℓ(µ|x) = 0
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MLE for the Bernoulli distribution

• taking logs: easier to work with the log-likelihood function. Since ln is a monotone function,

θ̂n(X ) = argmax
θ∈Θ

ℓ(θ|x) = argmax
θ∈Θ

ln ℓ(θ|x)

• example: let (X1, . . . ,Xn) be a random sample from a Bernoulli population with parameter
0 ≤ p ≤ 1, then the likelihood function reads

ℓ(p|x) =
n∏

i=1

pxi (1 − p)1−xi = pnx̄n (1 − p)n(1−x̄n) = ℓ(p|x̄n)

ln ℓ(p|x̄n) = nx̄n ln p + n(1 − x̄n) ln(1 − p)

d
dp

ln ℓ(p|x̄n)
∣∣∣∣
p=p̂

=
nx̄n
p̂

− n(1 − x̄n)

1 − p̂
= 0 ⇒ p̂ = x̄n

• checking the boundaries: likelihood function is monotone in p given that
ln ℓ(p|x̄n = 0) = n ln(1 − p) and that ln ℓ(p|x̄n = 1) = n ln p, and it is easy to verify that p̂ = x̄n,
confirming the sample mean as the MLE of p.
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MLE for the Gaussian distribution
• example: let X1, . . . ,Xn be iid n(θ, σ2) with both θ and σ2 unknown. Then

ℓ(θ, σ2|x) =
1

(2πσ2)n/2 · exp

{
−1

2

n∑
i=1

(xi − θ)2

σ2

}

ln ℓ(θ, σ2|x) = −n

2
ln 2π − n

2
lnσ2 − 1

2

n∑
i=1

(xi − θ)2

σ2

taking the first derivatives with respect to θ and σ2 and equating to zero,

∂

∂θ
ln ℓ(θ, σ2|x) =

1
σ2

n∑
i=1

(xi − θ) ⇒ θ̂ = x̄n

∂

∂σ2 ln ℓ(θ, σ2|x) = − n

2σ2 +
1

2σ4

n∑
i=1

(xi − θ)2

⇒ σ̂2 = n−1
n∑

i=1

(xi − x̄n)
2

• you may want to show that this is indeed a local maximum
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maximum likelihood invariance property

• say that we have a mapping θ → τ(θ), η = τ(θ) and that we are actually interested in η̂, but θ̂ is
easier to find or compute.

• example: in the betting odds example, we may find that the MLE of p is p̂, but we are actually
interested in p̂

1−p̂
.

• if we are to apply maximum likelihood, we could
− define a likelihood ℓ(θ|x), but then we obtain θ̂ and we are interested in η̂.
− define an alternative likelihood ℓ∗(η|x). We obtain η̂ directly, but this option is harder to compute.

• the maximum likelihood invariance property states that

ℓ∗(η̂) = ℓ∗(τ(θ̂))

so, for example, MLE of p
1−p

is p̂
1−p̂

.

• the invariance property is useful if we want to find out functions of estimators: e.g., if the MLE of
θ is X̄n, then the MLE of θ2 is X̄ 2

n .
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maximum likelihood invariance property

if the mapping is bijective, then

• we can maximize the likelihood as a function of θ or η = τ(θ):

ℓ∗(η|x) =
n∏

i=1

f (xi |τ−1(η)) = ℓ(τ−1(η)|x)

• and the supremum unchanged

sup
η

ℓ∗(η|x) = sup
η

ℓ(τ−1(η)|x) = sup
θ

ℓ(θ|x)

• the maximum of ℓ∗(η) is attained at η̂ = τ(θ̂).
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maximum likelihood invariance property

• the mapping τ not always is bijective

− there may be more that one θ such that τ(θ) = η

− define the induced likelihood ℓ∗ given by

ℓ∗(η|x) = sup
θ:τ(θ)=η

ℓ(θ|x)

and η̂ that maximizes ℓ∗(η|x) is the MLE of η

• theorem (CB 7.2.10): if θ̂ is the MLE of θ, for any function τ(θ), the MLE of τ(θ) is τ(θ̂).

• proof: given the definition of the induced likelihood function,

ℓ∗(η̂|x) = sup
η

sup
{θ:τ(θ)=η}

ℓ(θ|x) = sup
θ

ℓ(θ|x) = ℓ(θ̂|x)

whereas ℓ(θ̂|x) = sup{θ:τ(θ)=τ(θ̂)} ℓ(θ|x) = ℓ∗(τ(θ̂)|x). ■
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computational issues

• MLE stems from a maximization process, so it is prone to numerical difficulties, especially if the
log-likelihood is flat in the neighborhood of its maximum

lik

theta

• we also need to find the global maximum, which is not a trivial task.

• even finding local maxima may be numerically challenging, especially if there are non linearities in
the parameters.
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alternatives: direct maximization

• usually simpler algebraically, but sometimes harder to implement because there are no set rules to
follow

• one general technique is to bound the likelihood from above and then establish that there is a
unique point that attains the global upper bound.

• example: recall that
∑n

i=1(xi − a)2 ≥
∑n

i=1(xi − x̄n)
2 for any constant a, with equality if and only

if a = x̄n, and hence

exp

[
−1

2

n∑
i=1

(xi − µ)2
]
≤ exp

[
−1

2

n∑
i=1

(xi − x̄n)
2

]

with equality if and only if µ = x̄n so X̄n is the MLE.
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MLE in practice - R codes

MLEsampler <- function(mu,sigma2,n){
logLik <- function(theta){

n <- length(randomVec)
mu <- theta[1]
sigma2 <- theta[2]
logLik <- -0.5*n*log(sigma2)-0.5*sum((randomVec-mu)ˆ2)/sigma2
logLik <- -1*logLik

}
hats <- matrix(0,5000,2)
for (i in 1:5000){

randomVec <- rnorm(n,mean=mu,sd=sqrt(sigma2))
thetahat <- optim(c(10,2),logLik)
hats[i,1] <- thetahat$par[1]
hats[i,2] <- thetahat$par[2]

}
hats

}
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normal(20,2.5)
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Bayesian statistics

• in classical statistics, the parameter θ is thought to be an unknown and fixed quantity: parameter
θ exists in nature and we develop methods to estimate θ and conduct inference.

• frequentist probabilities: restrict the assignment of probabilities to statements that describe an
outcome of an experiment that can be repeated. Then the probability is the limit when the
experiment is repeated an infinite number of times.

• Bayesian approach: θ can be described by a probability distribution and reflects some subjective
prior knowledge of the researcher

− data updated the prior distribution, generating the posterior distribution
− updating is done with the use of the Bayes’ Rule

• subjective probabilities: probabilities applicable to any situation in which there is uncertainty,
subject to respecting Kolmogorov’s axioms
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Bayesian statistics

• remember Bayes’ rule: for any two events A and B,

P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A) ⇒ P(A|B) =
P(B|A)P(A)

P(B)

which is also applicable to pdf’s.

• Setting A = θ and B = x , we get

π(θ|x) =
p(x |θ) · π(θ)

p(x)

where
− π(θ|x) is the posterior: updated distribution of the parameters given data
− p(x |θ) is the likelihood: the probability that a given stretch of data is observed, conditional on the

parameters
− π(θ) is the prior: the distribution of the parameter which reflects the statistician’s subjective views on

the parameters
− p(x) is the marginal distribution of x , p(x) =

∫
p(y , θ)dθ =

∫
p(y |θ)π(θ)dθ
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Bayesian statistics

• intuition:

i. statistician has certain beliefs about the parameters, reflected on the prior

ii. data x becomes available

iii. statistician updates his/her belief about the distribution of parameters conditional on data, generating
the posterior

• if no data is available, statistician will report the beliefs, π(θ|x) = π(θ).

• as the amount of data goes to infinity, it can be shown that the posterior becomes the likelihood
π(θ|x) = p(x |θ).
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Bayesian statistics

• the equation

π(θ|x) =
p(x |θ) · π(θ)

p(x)

is the basis of Bayesian statistics and econometrics.

• note that p(x) is invariant with respect to θ, so

π(θ|x) ∝ p(x |θ) · π(θ)

which is simpler to compute since p(y) might be cumbersome to compute.

• p(x |θ) · π(θ) does not integrate to one, but maintains the shape of π(θ|x) and is much quicker to
compute.
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coin-tossing example, once more

• example: we are interested in estimating the probability of a head in a coin toss, which is coded as
P(yi = 1) = θ, so P(yi = 0) = 1 − θ.

• a classical statistician would maximize the likelihood

p(y1, . . . , yn|θ) =
n∏

i=1

θyi (1 − θ)1−yi

= θ
∑n

i=1 yi (1 − θ)n−
∑n

i=1 yi

= θnȳn (1 − θ)n(1−ȳn)

which, as we have seen, gives θ̂ = n−1∑n
i=1 yi = ȳn.

• a Bayesian statistician would require a prior on the parameters π(θ) to compute

π(θ|y1, . . . , yn) ∝ p(y1, . . . , yn|θ) · π(θ)
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coin-tossing example, once more

• Statistician A believes that π(θ) = I {0 ≤ θ ≤ 1}. This is also known as the uninformative prior.
In this case,

π(θ|y1, . . . , yn) ∝ θnȳn (1 − θ)n(1−ȳn) · I {0 ≤ θ ≤ 1}

and the posterior is proportional to the likelihood function, given that 0 ≤ θ ≤ 1 is a natural range
for θ.

• Statistician B believes that π(θ) = 1
h
I
{ 1

2 − 1
2h ≤ θ ≤ 1

2 + 1
2h
}

for a very small h. In this case,

π(θ|y1, . . . , yn) ∝ θnȳn (1 − θ)n(1−ȳn) · 1
h
I
{

1
2
− 1

2
h ≤ θ ≤ 1

2
+

1
2
h

}
which will also be very close to 1

2 . In particular, the posterior is zero for the regions of the prior
such that π(θ) = 0.
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coin-tossing example, once more

• Statistician C proposes a more flexible specification: assumes that θ ∼ Beta(α, β), so

π(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1 − θ)β−1

with 0 ≤ θ ≤ 1 and α, β > 0.

• α and β are referred to as hyper-parameters.

• why a Beta distribution?

− depending on choices of α and β, captures vast array of beliefs

− as we will see, facilitates the computation of the posterior
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coin-tossing example, once more
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coin-tossing example, once more

• the posterior distribution is

π(θ|y) ∝ θnȳn (1 − θ)n(1−ȳn) · Γ(α+ β)

Γ(α)Γ(β)
θα−1(1 − θ)β−1

∝ θnȳn (1 − θ)n(1−ȳn)θα−1(1 − θ)β−1

∝ θnȳn+α−1(1 − θ)n(1−ȳn)+β−1

so θ|y has the shape of a Beta(α1, β1), with α1 = nȳn + α and β1 = n(1 − ȳn) + β, except for a
normalization constant.

• using the fact that if z ∼ Beta(α̇, β̇),

E(z) =
α̇

α̇+ β̇
and var(z) =

α̇β̇

(α̇+ β̇)2(α̇+ β̇ + 1)

then

E(θ|y) =
α1

α1 + β1
and var(θ|y) =

α1β1

(α1 + β1)2(α1 + β1 + 1)
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conjugate priors

• expanding the expression for E(θ|y),

E(θ|y) =
α1

α1 + β1
=

nȳn + α

nȳn + α+ n(1 − ȳn) + β

=
nȳn + α

α+ β + n
=

α

α+ β + n
+

n

α+ β + n
ȳn

• as the sample size grows, n → ∞,

E(θ|y) =
α

α+ β + n︸ ︷︷ ︸
−→0

+
n

α+ β + n︸ ︷︷ ︸
−→1

ȳn

• in other words, as the sample size increases, the prior distribution has smaller relevance in
determining the posterior distribution.

• this is an example of conjugate priors: smart choices of priors for a given shape of the likelihood
such that it is easy to compute the posterior.
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Bayes in practice - R codes

plotPosterior <- function(alpha,beta,n){
ybar <- mean(y[1:n])
posteriorDist <-

function(theta){thetaˆ{n*ybar+alpha-1}*(1-theta)ˆ{n*(1-ybar)+beta-1}}
plot(seq(0,1,by=0.01),sapply(seq(0,1,by=0.01),posteriorDist),type=’l’,

xlab=”,ylab=’posterior’)
}

theta0 <- 0.5
alpha <- 1
beta <- 1
y <- rbinom(1000,1,theta0)

plotPosterior(alpha,beta,50)
plotPosterior(alpha,beta,200)
plotPosterior(alpha,beta,1000)
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prior Beta(1,1) and θ0 = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

pr
io

r

prior

0.0 0.2 0.4 0.6 0.8 1.0

0e
+

00
4e

−
16

8e
−

16

po
st

er
io

r

n=50

0.0 0.2 0.4 0.6 0.8 1.0

0e
+

00
2e

−
61

4e
−

61
6e

−
61

po
st

er
io

r

n=200

0.0 0.2 0.4 0.6 0.8 1.0

0e
+

00
4e

−
30

2
8e

−
30

2

po
st

er
io

r

n=1000

43 / 81



prior Beta(0.5,0.5) and θ0 = 0.25
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prior Beta(10,5) and θ0 = 0.1
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prior Beta(10,1000) and θ0 = 0.95
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basic criteria

• why to gauge performance? there are many ways to find reasonable point estimators for a given
parameter and each method may lead to a different estimator

• definition: the mean squared error (MSE) of an estimator T of a parameter θ is the average
squared difference between the estimator and the parameter: Eθ(T − θ)2

− mostly any function of |T − θ| measures the goodness-of-fit of the estimator T

− we will focus on mean squared error and unbiasedness

• advantages: analytically tractable, differentiable, easily interpretable

Eθ(T − θ)2 = Eθ(T − Eθ(T ) + Eθ(T )− θ)2

= (Eθ(T )− θ)2 + varθ(T ) = bias2θ(T )︸ ︷︷ ︸
accuracy

+ varθ(T )︸ ︷︷ ︸
precision
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MSE in a Gaussian model

• example: let X1, . . . ,Xn ∼ iidN(µ, σ2). The sample mean and variance are both unbiased
estimators of their population counterparts given that Eµ,σ2(X̄n) = µ and Eµ,σ2(S2

n ) = σ2 for all
µ and σ2.

• Since the estimators are unbiased, MSE is equal to the variance, and

Eµ,σ2(X̄n − µ)2 = var(X̄n)

X̄n ∼ N(µ, σ2/n) ⇒ var(X̄n) =
σ2

n

Eµ,σ2(S2
n − σ2)2 = var(S2

n )

(n − 1)S2
n /σ

2 ∼ χ2
n−1 ⇒ var(S2

n ) =
σ4

(n − 1)2
2(n − 1) = 2

σ4

n − 1

given that the variance of χ2
k is 2k.

• Can we find any improvement?
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MSE in a Gaussian model

• example (cont’d): what about the MLE estimator for the variance?

Eµ,σ2(σ̂2) = Eµ,σ2

(
n − 1
n

S2
n

)
=

n − 1
n

σ2

varµ,σ2(σ̂2) = varµ,σ2

(
n − 1
n

S2
n

)
=

2(n − 1)
n2 σ4

hence

E(σ̂2 − σ2)2 =

[
n − 1
n

σ2 − σ2
]2

+
2(n − 1)

n2 σ4

= σ4
[

1
n2 +

2(n − 1)
n2

]
= σ4

[
2n − 1
n2

]
and note that 2n−1

n2 < 2n
n2 = 2

n
< 2

n−1 .

• since n−1
n

< 1, the MLE mean squared error is smaller than that of pure unbiased estimators.
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MSE drawbacks

• tradeoff: imposing unbiasedness does not suffice to control the MSE because sometimes it pays
off to include some bias to achieve a larger decrease in the variance.

• drawbacks:

(1) one should not necessarily abandon the sample variance given that the MLE will on average
underestimate the true variance

(2) in addition, MSE is a somewhat weird criterion for a scale parameter given that it penalizes equally
underestimation and overestimation
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best unbiased estimators

• there is no best estimator in the MSE sense because the class of all estimators is way too vast,
e.g., θ̂(X ) = 1 is definitely the best ever estimator for θ = 1, but terrible otherwise.

• how about restricting the class of estimators?
− suppose there is an estimator T∗ with E(T∗) = τ(θ) ̸= θ. Define the class of all estimators with

equal bias at every θ,

Cτ = {T : Eθ(T ) = τ(θ)}

− then for any T1,T2 ∈ Cτ , biasθT1 = biasθT2, so comparison in MSE sense between T1 and T2 can
be based on variance alone.

− if T is unbiased, MSE(T , θ) = varθ(T )

• definition: an estimator T ∗ is a best unbiased estimator of τ(θ) if Eθ(T
∗) = τ(θ) for every θ and,

for any other unbiased estimator T of τ(θ),

varθ(T ∗) ≤ varθ(T )

for all θ. T ∗ is also called the uniformly minimum variance unbiased estimator of θ (UMVUE)
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Cramér-Rao inequality

• finding the UMVUE could often be a daunting and endless task.

• it is very useful to have a lower bound on the variance of any estimator:
− if an estimator reaches that bound, should be UMVUE. Search ends! ,
− but not reaching does not mean it is not UMVUE
− we will also have results on when the bound is attained

• this lower bound exists and is known as Cramér-Rao lower bound.

• first, an example...

52 / 81



Poisson unbiased estimation

• example: let X1, . . . ,Xn ∼ iid Poisson(λ). For all λ, Eλ(X ) = varλ(X ) = λ

Eλ(X̄n) = λ

Eλ(S
2
n ) = λ

to compare them, we should look at their variances

varλ(X̄n) = λ/n ≤ varλ(S2
n ) for all λ

after some lengthy calculations.

• consider now the unbiased estimator Ta = aX̄n + (1 − a)S2
n , is there some a for which

varλ(Ta) ≤ varλ(X̄n) for every λ?

• is there any other better unbiased estimator lurking about?
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Cramér-Rao inequality: univariate case

• theorem (Cramér-Rao lower bound): let (X1, . . . ,Xn) denote a sample with joint pdf f (x |θ) and
let T (X ) be any estimator satisfying

d
dθ

Eθ

[
T (X )

]
=

∫ ∞

−∞

∂

∂θ

[
T (x)f (x |θ)

]
dx and varθ

[
T (X )

]
< ∞,

it then follows that

varθ
[
T (X )

]
≥

(
d
dθ

Eθ

[
T (X )

])2

Eθ

[
∂ ln f (X |θ)

∂θ

]2
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Cramér-Rao inequality

varθ
[
T (X )

]
≥

(
d
dθ

Eθ

[
T (X )

])2

Eθ

[
∂ ln f (X |θ)

∂θ

]2
• some comments:

− if Eθ(T (X )) = θ,
(

d
dθ Eθ

[
T (X )

])2
= 1

− Eθ

[
∂ ln f (X |θ)

∂θ

]2
is known as the Fisher information of the sample for it entails a bound on the

variance of the best unbiased estimator of θ

− if we assume that (X1, . . . ,Xn) is iid with f (x |θ), then the lower-bound denominator reduces to (this
is proposition 1 below)

n · Eθ

[
∂

∂θ
ln f (Xi |θ)

]2

as the information number grows, the more info we have on θ and so the lower the bound on the
variance of the UMVU estimator.
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Cramér-Rao inequality

varθ
[
T (X )

]
≥

(
d
dθ

Eθ

[
T (X )

])2

Eθ

[
∂ ln f (X |θ)

∂θ

]2
• about Fischer information number:

− we will also see that, if we can exchange integral and derivatives,

Eθ

[
∂ ln f (X |θ)

∂θ

]2
= −Eθ

[
∂2 ln f (X |θ)

∂θ2

]
(proposition 2 below)

− so, if T (X ) is unbiased, and (X1, . . . ,Xn) is i.i.d. sample with f (x |θ), the Cramér-Rao inequality reads

varθ
[
T (X )

]
≥ −

1

n · Eθ

[
∂2 ln f (xi |θ)

∂θ2

]
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Cramér-Rao inequality

• lemma: the expected value of the derivative of the likelihood evaluated at the true parameter is
zero, Eθ

[
∂
∂θ

ln ℓ(θ|X )
]
= 0.

• proof:

Eθ

[
∂

∂θ
ln ℓ(X , θ)

]
=

∫ ∞

−∞

∂

∂θ
ln ℓ(X , θ)f (x |θ)dx

=

∫ ∞

−∞

∂
∂θ

f (x |θ)
f (x |θ) f (x |θ)dx =

∫ ∞

−∞

∂

∂θ
f (x |θ)dx

=
∂

∂θ

∫ ∞

−∞
f (x |θ)dx = 0

• important remark: this is true only if the derivative of the likelihood is evaluated at the true value,
or else we would have ∫ ∞

−∞

∂
∂θ

f (x |θ∗)
f (x |θ∗) f (x |θ)dx ̸=

∫ ∞

−∞

∂

∂θ
f (x |θ)dx
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Cramér-Rao inequality

• proof (i): by the Cauchy-Schwartz inequality,

[cov(X ,Y )]2 ≤ (varX )(varY ) =⇒ varX ≥ [cov(X ,Y )]2

varY

we choose X as T (X ) and Y as ∂
∂θ

ln f (X |θ)

• proof (ii): given that Eθ

[
∂
∂θ

ln f (X |θ)
]
= 0, then

varθ
[
∂ ln f (X |θ)

∂θ

]
= Eθ

[
∂ ln f (X |θ)

∂θ

]2

so we only need to solve cov(X ,Y ).
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Cramér-Rao inequality

• proof (iii): note that

d

dθ
EθT (X ) =

d

dθ

∫
T (x)f (x |θ)dx =

∫
T (x)

[
∂

∂θ
f (x |θ)

]
dx

=

∫
T (x)

[
∂

∂θ
f (x |θ)

]
f (x |θ)
f (x |θ)dx

= Eθ

[
T (X )

∂
∂θ

f (X |θ)
f (X |θ)

]

= Eθ

[
T (X )

∂

∂θ
ln ℓ(X |θ)

]
which is the cov between T (X ) and ∂

∂θ
ln f (X |θ), since Eθ

[
∂
∂θ

ln f (X |θ)
]
= 0 ■
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Cramér-Rao inequality

• proposition 1: if X1, . . . ,Xn are independent and identically distributed,

Eθ

[
∂ ln f (X |θ)

∂θ

]2

= n Eθ

[
∂ ln f (Xi |θ)

∂θ

]2

• proof: by independence, ln f (X |θ) = ln
∏n

i=1 f (Xi |θ) =
∑n

i=1 ln f (Xi |θ) so

Eθ

[
∂

∂θ
ln f (X |θ)

]2

= Eθ

[
∂

∂θ

n∑
i=1

ln f (Xi |θ)

]2

= Eθ

[
n∑

i=1

∂

∂θ
ln f (Xi |θ)

]2

=
n∑

i=1

Eθ

[
∂

∂θ
ln f (Xi |θ)

]2

+

j∑
i=1

∑
i ̸=j

Eθ

[
∂

∂θ
ln f (Xi |θ)

∂

∂θ
ln f (Xj |θ)

]
︸ ︷︷ ︸

=0 by independence

■
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Cramér-Rao inequality

• proposition 2:

Eθ

[
∂ ln f (X |θ)

∂θ

]2

= −Eθ

[
∂2 ln f (X |θ)

∂θ2

]

• proof: note that ∂
∂θ

ln ℓ(x , θ) =
∂
∂θ

f (x|θ)
f (x|θ) , so

∂2

∂θ2 ln ℓ(x , θ) =

[
∂2

∂θ2 f (x |θ)
]
f (x |θ)−

[
∂
∂θ

f (x |θ)
]2

[f (x |θ)]2

=
∂2

∂θ2 f (x |θ)
f (x |θ) −

[
∂
∂θ

f (x |θ)
f (x |θ)

]2

=
∂2

∂θ2 f (x |θ)
f (x |θ) −

[
∂

∂θ
ln ℓ(x |θ)

]2

Eθ

[
∂2

∂θ2 ln ℓ(x , θ)

]
= Eθ

[
∂2

∂θ2 f (x |θ)
f (x |θ)

]
− Eθ

[
∂

∂θ
ln ℓ(x |θ)

]2

and Eθ

[
∂2
∂θ2 f (x|θ)
f (x|θ)

]
=
∫

∂2

∂θ2 f (x |θ)dx = ∂2

∂θ2

∫
f (x |θ)dx = 0. ■
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some notation

• let’s put some notation down

− the k × 1 score vector for the full sample s(x , θ) = ∂
∂θ

ln ℓ(x , θ)

− the k × 1 score vector for one observation s(xi , θ) =
∂
∂θ

ln ℓ(xi , θ)

− the k × k Fisher information matrix I(θ) = Eθ (s(x , θ)s(x , θ)′)

− the k × k Hessian matrix H(x , θ) = ∂2

∂θ∂θ′ ln ℓ(x , θ)

− the k × k expected Hessian H(θ) = Eθ [H(x , θ)]

• in the results that follow, we are going to assume that one can swap integrals and derivatives.
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Cramér-Rao inequality: multivariate case

• theorem (Cramér-Rao lower bound): let T (X ) be an unbiased estimator of θ. Then

varθ [T (X )] ≥ [I(θ)]−1

and, given the results obtained before, one can obtain

− I(θ) by definition as the expected outer product of the scores, or

− calculating the expected Hessian and using the identity I(θ) = −H(θ)
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Cramér-Rao inequality

• proof (i): we first show that

Eθ

(
T (X )s(X , θ)′

)
= I

where I is the identity matrix since

Eθ

(
T (X )s(X , θ)′

)
=

∫ ∞

−∞
T (X )

∂
∂θ′ f (x |θ)
f (x |θ) f (x |θ)dx

=
∂

∂θ′

∫ ∞

−∞
T (X )f (x |θ)dx

=
∂

∂θ′
Eθ(T (X )) = I

• proof (ii): to get the Cramér-Rao lower bound, note that

varθ
(

T (X )
s(X , θ)

)
=

(
varθT (X ) I

I I(θ)

)
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Cramér-Rao inequality

• proof (cont’d): to get the result, note any variance-covariance matrix is positive semi-definite.
Therefore,

varθT (X ) · I(θ)− I ≥ 0

which implies

varθT (X ) ≥ [I(θ)]−1

establishing the final result. ■
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Cramér-Rao inequality

• proposition 2, multivariate case: I(θ) = −H(θ)

• proof:

∂2

∂θ∂θ′
ln ℓ(x , θ) =

∂

∂θ

(
∂

∂θ′
ln f (x |θ)

)
=

∂2

∂θ∂θ′ f (x |θ)
f (x |θ) −

[
∂

∂θ
ln f (x |θ)

] [
∂

∂θ′
ln f (x |θ)

]
applying to product rule. So the expected Hessian

H(θ) = Eθ [H(X , θ)] =

∫ ∞

−∞

∂2

∂θ∂θ′
ln ℓ(x , θ)f (x |θ)dx

=

∫ ∞

−∞

∂2

∂θ∂θ′
f (x |θ)dx − I(θ)

=
∂2

∂θ∂θ′

∫ ∞

−∞
f (x |θ)dx − I(θ)

= −I(θ)

completing the proof. ■
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example 1

• let X1, . . . ,Xn be i.i.d. Poisson (λ). Then

f (xi |λ) =
λxi e−λ

xi !

ln ℓ(xi |λ) = −λ+ xi lnλ− ln xi !

s(xi , λ) = −1 +
xi
λ

I(θ) = n Eθ

[(
−1 +

xi
λ

)2
]

= n Eθ

(
1 − 2

xi
λ

+
x2
i

λ2

)
= n

(
1 − 2

λ

λ
+

λ+ λ2

λ2

)
= n

(
1 − 2

λ

λ
+

λ+ λ2

λ2

)
=

n

λ

• so the unbiased estimator T (X ) = X̄ achieves the Cramér-Rao lower bound λ
n

and therefore it is
the UMVU estimator. ■
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example 2

• let X1, . . . ,Xn be i.i.d. from exponential(λ), so

f (xi |λ) = λe−λxi

ln ℓ(xi |λ) = lnλ− λxi

s(xi , λ) =
1
λ
− xi

H(λ) = EθHi (xi |λ) = − n

λ2

so the Cramér-Rao inequality states that, among the unbiased estimators, the lower bound on the
variance is λ2

n
.

• Given that E(X k) = k!
λk

λ̂MM,k =

[
k!

µ̂k

] 1
k

is as method-of-moment estimator, where µ̂k is the k-th sample moment. We also consider the
maximum likelihood estimator.
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example 2 - R codes

CRsamplerExponential <- function(lambda,n){

logLikExp <- function(theta){

n <- length(randomVec)
logLik <- n*log(theta)-theta*sum(randomVec)
logLik <- -1*logLik

}

hats <- matrix(0,5000,6)

for (i in 1:5000){

randomVec <- rexp(n,lambda)
mu1 <- mean(randomVec)
mu2 <- mean(randomVecˆ2)
mu3 <- mean(randomVecˆ3)
mu4 <- mean(randomVecˆ4)
mu5 <- mean(randomVecˆ5)

hats[i,1] <- 1/mu1
hats[i,2] <- (factorial(2)/mu2)ˆ(1/2)
hats[i,3] <- (factorial(3)/mu3)ˆ(1/3)
hats[i,4] <- (factorial(4)/mu4)ˆ(1/4)
hats[i,5] <- (factorial(5)/mu5)ˆ(1/5)

thetahat <- optim(lambda,logLikExp)
hats[i,6] <- thetahat$par[1]

}

hats

}
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example 2

Table: Cramér-Rao lower bound simulations

λ = 2, n = 1000 λ = 20, n = 1000
λ2/n var(λ̂) var(λ̂)

λ2/n λ2/n var(λ̂) var(λ̂)
λ2/n

λ̂MM,1 0.004 0.004 1.026 0.400 0.415 1.037
λ̂MM,2 0.004 0.005 1.261 0.400 0.504 1.259
λ̂MM,3 0.004 0.008 2.026 0.400 0.814 2.036
λ̂MM,4 0.004 0.014 3.532 0.400 1.432 3.580
λ̂MM,5 0.004 0.023 5.771 0.400 2.348 5.872
λ̂MLE 0.004 0.004 1.027 0.400 0.415 1.037
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example 2

• there is one catch here: λ̂MM,1 = 1
µ̂1

so

E(λ̂MM,1) = E
(

1
µ̂1

)
Jensen
̸= 1

E(µ̂1)
= λ

i.e., the estimator is biased.

• we could instead estimate φ = 1
λ
.

− the method-of-moments estimators are φ̂MM,k = λ̂MM,k .

− by the invariance principle, the maximum likelihood estimator is φ̂MLE = λ̂MLE .

− the Cramér-Rao lower bound is 1
φ2n .
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example 2

Table: Cramér-Rao lower bound simulations

φ = 1/2, n = 1000 φ = 1/20, n = 1000
λ2/n var(λ̂) var(λ̂)

λ2/n λ2/n var(λ̂) var(λ̂)
λ2/n

λ̂MM,1 2.5 · e−5 2.55 · e−5 1.019 2.5 · e−6 2.55 · e−6 1.020
λ̂MM,2 2.5 · e−5 3.15 · e−5 1.253 2.5 · e−6 3.09 · e−6 1.239
λ̂MM,3 2.5 · e−5 5.06 · e−5 2.022 2.5 · e−6 4.95 · e−6 1.981
λ̂MM,4 2.5 · e−5 9.01 · e−5 3.604 2.5 · e−6 8.64 · e−6 3.456
λ̂MM,5 2.5 · e−5 14.92 · e−5 5.971 2.5 · e−6 14.10 · e−6 5.640
λ̂MLE 2.5 · e−5 2.54 · e−5 1.019 2.5 · e−6 2.54 · e−6 1.019
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example 3

• let X1, . . . ,Xn be i.i.d. N(µ, σ2). Then

ln ℓ(xi , µ, σ
2) = −1

2
ln 2π − 1

2
lnσ2 − (xi − µ)2

2σ2

s(xi , µ, σ
2) =

(
xi−µ
σ2

− 1
2σ2 + (xi−µ)2

2σ4

)

H(xi , µ, σ
2) = n

(
− 1

σ2 − xi−µ
σ4

− xi−µ
σ4

1
2σ4 − (xi−µ)2

σ6

)

H(µ, σ2) = Eθ

[
H(xi , µ, σ

2)
]

= n

(
− 1

σ2 0
0 − 1

2σ4

)
therefore

I(θ) = −H(µ, σ2) =

(
n
σ2 0
0 n

2σ4

)
so X̄ achieves the Cramér-Rao lower bound, but the variance of the estimator S2 for σ2 is
2σ4/(n− 1) is strictly greater than the lower bound. Two important questions: is the lower bound
with respect to σ2 unattainable? How to find the best unbiased estimator of σ2?

73 / 81



Contents

1. estimation methods

1.1 method of moments

1.2 maximum likelihood

1.3 Bayesian approach

2. evaluating estimators

2.1 Cramér-Rao inequality

2.2 attainment

2.3 Rao-Blackwell

3. exercises

73 / 81



attainment of Cramér-Rao lower bound

• bound follows from an application of the Cauchy-Schwarz inequality
− conditions for attainment of the bound are the same for equality in the Cauchy-Schwarz inequality!

• theorem (attainment) (CB 7.3.15): let X1, . . . ,Xn ∼ iid f (x |θ), with f (x |θ) satisfying the
conditions for the CR inequality, then an unbiased estimator T (X ) of τ(θ) attains the CR lower
bound if and only if

a(θ)
[
T (X )− τ(θ)

]
=

∂ ln
∏n

i=1 f (Xi |θ)
∂θ

for some function a(θ) that depends exclusively on θ.
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attainment of Cramér-Rao lower bound

• proof: the Cramér-Rao bound is equivalently written[
covθ

(
T (X ),

∂

∂θ
ln

n∏
i=1

f (Xi |θ)

)]2

≤ [varθT (X )] ·

[
varθ

∂

∂θ
ln

n∏
i=1

f (Xi |θ)

]
⇓[

corrθ

(
T (X ),

∂

∂θ
ln

n∏
i=1

f (Xi |θ)

)]2

≤ 1

⇓∣∣∣∣∣corrθ
(
T (X ),

∂

∂θ
ln

n∏
i=1

f (Xi |θ)

)∣∣∣∣∣ ≤ 1

so holds with equality if, and only if, T (X ) is an affine function of ∂
∂θ

ln
∏n

i=1 f (Xi |θ), that is,
there are a and b such that

T (X ) = a · ∂

∂θ
ln

n∏
i=1

f (Xi |θ) + b
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attainment of Cramér-Rao lower bound

• proof (cont’d): taking expectations on both sides,

τ(θ) = b

since Eθ [T (X )] = τ(θ) and Eθ

[
ln
∏n

i=1 f (Xi |θ)
]
= 0. It follows that

T (X )− τ(θ) = a · ∂

∂θ
ln

n∏
i=1

f (Xi |θ)

that is, T (X )− τ(θ) is proportional to ∂
∂θ

ln
∏n

i=1 f (Xi |θ). ■
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attainment of Cramér-Rao lower bound

• example: in the Gaussian case, we have

ℓ(µ, σ2|x) =
1

(2πσ2)n/2 exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2
}

ln ℓ(µ, σ2|x) = −n

2
ln(2π)− n

2
lnσ2 − 1

2σ2

n∑
i=1

(xi − µ)2

∂

∂σ2 ln ℓ(µ, σ2|x) =
n

2σ4

(
n∑

i=1

(xi − µ)2

n
− σ2

)

choosing a(θ) = n
2σ4 , the best unbiased estimator is 1

n

∑n
i=1(xi − µ)2. It is calculable only if µ is

known! If µ is not known, the Cramér-Rao lower bound cannot be achieved. ■
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Rao-Blackwell theorem

• what if allowable estimators do not attain the lower bound? sufficient statistics allow us to refine
the search for efficient estimators

• theorem (Rao-Blackwell) let T denote any unbiased estimator of τ(θ) and let S be a sufficient
statistic for θ, then ϕ(S) = E(T |S) is such that Eθ

[
ϕ(S)

]
= τ(θ) and varθϕ(S) ≤ varθ(T ) for all

θ

• proof: ϕ(S) indeed is an estimator because it does not depend on θ due to the fact that S is
sufficient (in other words, sufficiency ensures it remains a statistic depending exclusively on the
sample and not on the parameter), whereas

τ(θ) = Eθ(T ) = Eθ

[
E(T |S)

]
= Eθ

[
ϕ(S)

]
varθ(T ) = varθ

[
E(T |S)

]
+ Eθ

[
var(T |S)

]
= varθ

[
ϕ(S)

]
+ Eθ

[
var(T |S)

]
≥ varθ

[
ϕ(S)

]
that is, conditioning improves the estimator. ■
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conditioning on insufficient statistics

• it is generally true that conditioning improves the variance

− if not conditioned on a sufficient statistic, the result might depend on the true parameter

− so it is not an estimator!

• example: if X1,X2 ∼ iidN(µ, 1), then X̄2 ∼ N(µ, 1/2). Conditioning on the insufficient statistic
X1 then yields

ϕ(X1) = Eµ(X̄2|X1) =
Eµ(X1|X1) + Eµ(X2|X1)

2
=

X1 + µ

2

and so ϕ(X1) is not an estimator as it depends on µ. ■
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further results

• we answered the question of when the lower bound is attainable

• there is a large literature on finding the UMVU estimator, which we will not cover

• in particular, the Lehmann-Scheffe lemma shows that conditioning on a complete statistic, the
Rao-Blackwell device yields the UMVU estimator.
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Reference:

• Casella and Berger, Ch. 7

• Greenberg, Introduction to Bayesian Econometrics, Ch. 2

Exercises:

• 7.1, 7.2(a), 7.4, 7.7–7.12, 7.14, 7.17–7.21, 7.37, 7.38(a), 7.40–7.42, 7.44, 7.46 (a,b,d), 7.49(a,b)
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